
Math 114 Assignment Two Solutions Stephen Mackereth

Problem One.

Let S ⊂ Rn be a measurable set with m(S) < ∞ and let � > 0 be a positive real number.
Show that there exists a compact subset K ⊂ S such that

m(S)− � ≤ m(K) ≤ m(S).

Proof. If S is measurable, then m(S) = m∗(S) = inf
O⊃S

m∗(O), so for any � > 0 there exists

some open O� ⊃ S for which m(O�)−m(S) < �.

Now in fact we want to apply this Remark not to S but to Sc. Notice that an open set
O� ⊃ Sc has as its complement a closed set (O�)c = F� ⊂ S.

Therefore, for any � > 0 we can find F�/2 ⊂ S that m(S)−m(F�/2) <
�

2 .

Now to generate a compact set K, note that a compact set in Rn is the same as a closed and
bounded set. Therefore, for fixed �, let Kn := Bn(0) ∩ F�/2, where Bn(0) denotes the closed
ball of radius n and centre 0. Now thus defined, Kn is compact for all n ∈ N,

K1 ⊂ K2 ⊂ K3 ⊂ · · · ⊂ F�/2,

and

F�/2 =
∞�

n=1

Kn.

By monotonicity of measure and by the monotone convergence theorem in R, it follows that

m(F�/2) = lim
n→∞

m(Kn)

and for any � > 0 there exists N sufficiently large that

m(F�/2)−
�

2
< m(KN) < m(F�/2).

Therefore,
m(S)− � < m(KN) < m(S)

as desired. �

Problem Two.

Let X be a set and M be a σ−algebra of subsets of X. Suppose that m : M → [0,∞] is a
finitely additive, countably subadditive function. Show that m is countably additive.

Proof. It suffices to show that for any pairwise disjoint sequence of subsets S0, S1, S2, · · · ⊂ X,

and for any N ∈ N,
N�

k=1

m(Sk) ≤ m(S)
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where S =
�∞

k=1 Sk. But indeed, write S as a disjoint union

S =

�
N�

k=1

Sk

�
∪
� ∞�

k=N+1

Sk

�

so that by finite additivity,

m(S) = m

�
N�

k=1

Sk

�
+m

� ∞�

k=N+1

Sk

�
=

N�

k=1

m(Sk) +m

� ∞�

k=N+1

Sk

�
≥

N�

k=1

m(Sk)

as required. �

Appendix to Problem One.

I typed out this unnecessary lemma before realising it was unnecessary for this problem.
Nevertheless, it is interesting and important.

Lemma. If S is measurable, then for all � > 0 there exists an open O� ⊃ S such that
m∗(O� − S) < �.

Indeed, if S is measurable, then for any A ∈ Rn,

m
∗(A) = m

∗(A ∩ S) +m
∗(A ∩ S

c).

We also know that m∗(S) = inf
O⊃S

m∗(O), so for any � > 0 there exists some open O� ⊃ S for

which m∗(O�)−m∗(S) < �. Put A = O� into the equation above, to obtain

m
∗(O�) = m

∗(O� ∩ S) +m
∗((O�)

c ∩ S)

which is
m

∗(O�) = m
∗(S) +m

∗((O�)
c − S).

Case 1. Suppose that m∗(S) = m(S) < ∞. Then we can subtract it from both sides to get

m
∗((O�)

c − S) = m
∗(O�)−m

∗(S) < �

as required.

Case 2. Alternatively, ifm(S) = ∞, then chop up S into countably many pieces S1, S2, S3, · · ·
each of finite measure, and apply Case 1 to each piece, choosing �j = 2−j� for Sj. End of
Lemma. �
Remark. This Lemma furnishes us with a very important alternative definition of what it
means to be a measurable set:

Definition. S ⊂ Rn is measurable just if for all � > 0 there exists an open O� ⊃ S such that
m∗(O� − S) < �.

N.B. that I haven’t proved the back direction, namely that this definition entails the prof’s
definition of “measurable”. The prof’s definition is usually known as the Caratheodory
definition of measurability. The back direction is “left as exercise.” End of Remark.
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